
英伟达253B开源新王登场,Llama 4三天变陪衬!直逼DeepSeek-R1成推理天花板
英伟达253B开源新王登场,Llama 4三天变陪衬!直逼DeepSeek-R1成推理天花板Llama 4刚出世就被碾压!英伟达强势开源Llama Nemotron-253B推理模型,在数学编码、科学问答中准确率登顶,甚至以一半参数媲美DeepSeek R1,吞吐量暴涨4倍。关键秘诀,就在于团队采用的测试时Scaling。
Llama 4刚出世就被碾压!英伟达强势开源Llama Nemotron-253B推理模型,在数学编码、科学问答中准确率登顶,甚至以一半参数媲美DeepSeek R1,吞吐量暴涨4倍。关键秘诀,就在于团队采用的测试时Scaling。
基于规则的强化学习(RL/RFT)已成为替代 SFT 的高效方案,仅需少量样本即可提升模型在特定任务中的表现。
推理增强型大语言模型LRM(如OpenAI的o1、DeepSeek R1和Google的Flash Thinking)通过在生成最终答案前显式生成中间推理步骤,在复杂问题解决方面展现了卓越性能。然而,对这类模型的控制仍主要依赖于传统的输入级操作,如提示工程(Prompt Engineering)等方法,而你可能已经发现这些方法存在局限性。
DeepSeek新论文来了!在清华研究者共同发布的研究中,他们发现了奖励模型推理时Scaling的全新方法。DeepSeek R2,果然近了。
随着DeepSeek R1、OpenAI GTP-4o、Antropic Claude3.7、xAI Grok3纷至沓来,AI大模型已然变成巨头的游戏,“百模大战”也成为了过去式。到了2025年,让用户先把AI用起来,也已经成为了一众厂商的共识。
众所周知,DeepSeek R1 这种模型在推理任务上很能打,尤其是在数学和编程这些逻辑性强的领域。那么我们能直接把这种强大的推理能力搬到 DeepSearch 这种需要动态规划、多轮交互的深度搜索场景里吗?
由于 DeepSeek R1 和 OpenAI o1 等推理模型(LRM,Large Reasoning Model)带来了新的 post-training scaling law,强化学习(RL,Reinforcement Learning)成为了大语言模型能力提升的新引擎。然而,针对大语言模型的大规模强化学习训练门槛一直很高:
AI社区掀起用大模型玩游戏之风!例如国外知名博主让DeepSeek和Chatgpt下国际象棋的视频在Youtube上就获得百万播放,ARC Prize组织最近也发布了一个贪吃蛇LLM评测基准SnakeBench。
其实大模型在DeepSeek-V3时期就已经「顿悟」了?
首个基于混合Mamba架构的超大型推理模型来了!就在刚刚,腾讯宣布推出自研深度思考模型混元T1正式版,并同步在腾讯云官网上线。对标o1、DeepSeek R1之外,值得关注的是,混元T1正式版采用的是Hybrid-Mamba-Transformer融合模式——